Adapting Reinforcement Learning for Computer Games: Using Group Utility Functions

نویسندگان

  • Jay Bradley
  • Gillian Hayes
چکیده

Group utility functions are an extension of the common team utility function for providing multiple agents with a common reinforcement learning signal for learning cooperative behaviour. In this paper we describe what group utility functions are and suggest using them to provide non-player computer game character behaviours. As yet, reinforcement learning techniques have very rarely been used for computer game character specification. Here we show the results of using a group utility function to learn an equilibrium between two computer game characters and compare this against the performance of the two agents learning independently. We also explain how group utility functions could be applied to learn equilibria between groups of agents. We highlight some implementation issues arising from using a commercial computer game engine for multi-agent reinforcement learning ex-

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reinforcement learning for qualitative group behaviours applied to non-player computer game characters

This thesis investigates how to train the increasingly large cast of characters in modern commercial computer games. Modern computer games can contain hundreds or sometimes thousands of non-player characters that each should act coherently in complex dynamic worlds, and engage appropriately with other non-player characters and human players. Too often, it is obvious that computer controlled cha...

متن کامل

The effect of using computer games on learning free throw Basketball skill and comparison with skilled and learning pattern

The aim of this experiment was to study the effect of computer game on acquisition and retention of free throw basketball skills (accuracy and pattern) and compare this method with two patterning methods (skilled and learning). 50 high school students age range 15-17 years were selected as a research samples. Subjects after participating in the pretest were divided into 5 equal groups and each ...

متن کامل

Adaptive agents on evolving networks

In this work we study the learning dynamics for agents playing games on networks. We propose a model of network formation in repeated games where players strategically adopt actions and connections simultaneously using a reinforcement learning scheme which is called Boltzmann-Q-learning. This adaptation scheme in the continuous time limit has a proven relation to the evolutionary game theory th...

متن کامل

The Effect of Electronical Media on the Reinforcement of Social Behavior of Youth from the Computer Course Professors and Students Viewpoints of Sari Islamic Azad University

The goal of research was the effect of electronical learning media on the reinforcement of youth social behavior from the point of view of computer course professors and students of Islamic Azad University of Sari. The statistical population was included of all computer students and professors of I.A.U of Sari. The statistical sample was identified by using of the sample content identification ...

متن کامل

Using Reinforcement Learning to Introduce Artificial Intelligence in the Cs Curriculum

There are many interesting topics in artificial intelligence that would be useful to stimulate student interest at various levels of the computer science curriculum. They can also be used to illustrate some basic concepts of computer science, such as arrays. One such topic is reinforcement learning – teaching a computer program how to play a game or traverse an environment using a system of rew...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005